Interfaces, Traitements, Organisation et Dynamique des Systèmes
Présentation
Le laboratoire Interfaces Traitements Organisation et Dynamique des Systèmes – ITODYS, UMR7086 est une unité mixte de l'Université Paris Diderot et du CNRS (UMR 7086) rattaché à l'institut de chimie du CNRS et à ses sections 13 et 15 du comité national.
L’ITODYS rassemble 73 permanents (39 enseignants-chercheurs, 12 chercheurs CNRS et 22 BIATSS) et 40 doctorants et post-doctorants soit 113 personnes autour de 3 départements scientifiques, une équipe de modélisation moléculaire et des services communs.
Le laboratoire développe des activités de recherche autour de la chimie de surface, des interfaces, des nanomatériaux et nanosystèmes et de la chimie moléculaire pour les nanosciences. Le large spectre thématique explore différents aspects de la chimie-physique des molécules, nanosystèmes et nanomatériaux : Nanoélectrochimie, plasmonique moléculaire, biocapteurs électrochimiques, surfaces fonctionnalisées et nano-structurées, électronique organique, nanomatériaux et matériaux hybrides, assemblages supramoléculaires, modélisation moléculaire sont les thèmes les plus saillants.
Le laboratoire dispose d’un parc d'équipements pour la caractérisation des matériaux, des surfaces et nano-systèmes (MEB, AFM, XPS, diffractométrie X, Raman, IR, SECM, GC-MS, RMN..). Ces équipements sont complétés par une activité de nature théorique, qui bénéficie d'accès à des moyens de calcul à la fois internes et externes.
L'ITODYS est partenaire du Labex SEAM (Science and Engineering for Advanced Materials, http://www.labex-seam.fr) et plus particulièrement impliqué dans les axes : « Nano-matériaux inorganiques » (axe A2) et « Fonctionnalisation et nano-structuration des surfaces » (axe A3). Il est également associé au « laboratoire Interdisciplinaire des Energies de Demain – LIED (http://www.lied-pieri.univ-paris-diderot.fr/) et à son réseau international PIERI (Paris Interdisciplinary Energy Research Institute) L'ITODYS développe de très nombreuses collaborations nationales et internationales. Ces actions de recherche prennent place dans le cadre de projets ANR, de GDR (nationaux ou internationaux), de projets européens, de collaborations bilatérales avec de nombreux laboratoires académiques de différentes régions du monde ou au travers de thèses en co-tutelles. De nombreux travaux sont également effectués dans le cadre de contrats avec des organismes publics ou des partenaires industriels.
Le laboratoire a une politique d’animation forte et structurée autour : des Séminaires de Chimie Autour des Nanosciences - SCAN (contacts : Vincent Noël, vincent.noel@univ-paris-diderot.fr); des journées des doctorants (contact : Carole Connan, carole.connan@univ-paris-diderot.fr); d’une journée annuelle de présentation de l’instrumentation (contact : Philippe Decorse, philippe.decorse@univ-paris-diderot.fr); d’une journée destinée aux nouveaux entrants ; de sessions consacrées à l’Hygiène, sécurité et conditions de travail (contact
Thèmes de recherche
D1 « Surfaces, Nanostructuration et Réactivité »
(19 permanents, responsable Pr. B. Piro, piro@univ-paris-diderot.fr)
Le département D1 rassemble 4 équipes : Surfaces Bioactives et Capteurs – SBC (D1-1) ; Organisation Moléculaire Nano2D – OMNa2D (D1-2) ; Surfaces-Interfaces (D1-3) et Transfert d’Electron, Réactivité et Surfaces – TERS (D1-4). Les activités de recherche de ce département concernent le développement de nouvelles méthodes pour la fonctionnalisation de surface, la maîtrise de l’organisation des structures greffées ou adsorbées sur ces surfaces et l’élaboration de systèmes mettant à profit cette fonctionnalisation et structuration, capables de fournir une réponse macroscopique à un évènement de reconnaissance moléculaire tel que l’on peut l’observer dans les capteurs et biocapteurs. Une stratégie développée pour le contrôle nanométrique de l’organisation sur les surfaces consiste à profiter de l’auto-organisation supramoléculaire et par liaisons hydrogènes d’unités pi conjuguées. Le contrôle et l’étude de la réactivité chimique des interfaces sont également une préoccupation importante du département.
D2 « Nano-objets : Chimie, Physique et Applications »
(20 permanents, responsable Dr. J. Y. Piquemal, jean-yves.piquemal@univ-paris-diderot.fr)
Le département D2 rassemble les intérêts scientifiques de 3 équipes : Nanomatériaux (D2-1) ; Plasmonique Moléculaire et Spectroscopies Exaltées de Surface PMSES (D2-2) et Métaux, Chélateurs et Protéines (D2-3). Les recherches de ces équipes convergent vers la synthèse, la caractérisation et les applications de nanoparticules métalliques ou nano-hybrides organiques / inorganiques.
Les Nano-objets étudiés au sein de ce département sont principalement des nanoparticules métalliques ou nanohybrides organiques / inorganiques dont la forme et la taille (nano-fils, nano-bâtonnets, nano-pyramides, etc….) sont finement contrôlées par les différentes voies d’élaboration maîtrisées par les équipes participantes.
Ainsi, les trois équipes possèdent des expertises complémentaires sur différents aspects des nano-objets : synthèse par voie polyol ou biologique pour l’équipe Nanomatériaux ou maitrise de l’élaboration de nanostructures métalliques par lithographie électronique pour l’équipe PMSES. Les équipes D2-1, D2-2 et D2-3 développent des études fondamentales visant à comprendre i) les processus de croissance de ces nano-objets ii) leurs propriétés optiques ou d’activités SERS en relation avec leurs formes et leurs tailles iii) leurs interactions avec les systèmes biologiques ce qui comprend les études de toxicité ou les mécanismes cinétiques d’internalisation de nanoparticules dans des cellules.
D3 « Électronique Moléculaire, Transduction & Nanoélectrochimie »
(11 permanents, responsable Pr. J. C. Lacroix, lacroix@univ-paris-diderot.fr)
Deux équipes composent ce département scientifique : Transduction Moléculaire et Supramoléculaire – TMS (D3-1) et Nanoélectrochimie (D3-2). LE champ scientifique se positionne autour des propriétés électrochimiques et électroniques d’entités fonctionnelles moléculaires et de divers nanosystèmes, de leurs assemblages ou de leur adressage en vue d’applications relevant des Nanosciences et des Nanotechnologies pour l’Information et l’énergie. Les champs d’exploration se répartissent du moléculaire au supramoléculaire et du moléculaire aux nano-systèmes voire aux (nano)dispositifs. La question des interfaces est traitée au travers des problèmes génériques d’organisation et d’adressage. L’électrochimie et les transferts d’électrons, parfois photoinduits, occupent une place centrale dans le département D3, à la fois comme moyens d’analyse et de préparation d’une part mais aussi comme socle commun des objets d’études.
Modélisation moléculaire
(5 permanents, responsable Pr. F. Maurel, maurel@univ-paris-diderot.fr)
Les activités de l’équipe couvrent la description de systèmes moléculaires simples aux systèmes complexes comme les complexes protéines – ligands ou les processus aux surfaces. Ces thématiques font appel aux méthodes basées sur des champs de force à celles de la mécanique quantique (sous conditions périodiques ou non) ou aux méthodes hybrides QM/MM ou QM/QM’ qui peuvent être statiques ou dynamiques et qui permettent la modélisation de processus dans des milieux complexes. Les études théoriques étant menées au plus près des problématiques expérimentales, la politique suivie par l’équipe privilégie des collaborations durables et actives avec les expérimentateurs, dans les équipes du laboratoire, mais également à l’extérieur de celui-ci. Les activités de l’équipe sont organisées autour de trois thèmes principaux au carrefour de nombreuses problématiques expérimentales : La modélisation des biomolécules et des complexes ligands – biomolécules ; L’étude de la structure électronique, des propriétés spectroscopiques et de la réactivité de systèmes -conjugués photo- ou électro-actifs et l’étude des processus d’auto-organisation supramoléculaire sur surface.
[tel-02466421] Modélisation multi-échelle de biomatériaux pour des problématiques expérimentales
Date: 4 2 月 2020 - 14:27
Desc: La confection de dispositifs impliquant des biomolécules, notamment dans le cadre de la détection (biocapteurs) ou de la protection contre des pathogènes (revêtements antimicrobiens), compte toujours un grand nombre d’interrogations notamment à l’échelle atomique. Dans ce contexte, nous avons utilisé les outils de la modélisation moléculaire afin de réaliser des études multi-échelles (à la fois en quantique et en mécanique moléculaire) pour étudier des systèmes (expérimentaux) impliquant des biomolécules et solutionner des problématiques. L’étude a été menée au sein de deux projets. Dans le cadre du premier d’entre eux, nous nous sommes tout d’abord intéressé à l’optimisation d’un biocapteur impliquant un transistor à effet de champ de type EGOFET, en nous concentrant plus particulièrement sur le canal semi-conducteur du transistor. Dans un second temps, nous avons réalisé une étude autour de l’interaction biologique et spécifique du biocapteur. Dans le cadre du second projet, nous nous sommes intéressés à un revêtement antimicrobien. Celui-ci s’appuie sur le greffage d’un peptide comportant une séquence d’accroche, une séquence antimicrobienne ainsi qu’un site clivable par une enzyme spécifique au pathogène que l’on souhaite traiter. En présence de ce dernier uniquement, le peptide antimicrobien est ainsi libéré dans le milieu. Bien que ce système fonctionne parfaitement en solution, ses propriétés bactéricides sont perdues lorsqu’il est greffé sur une surface, une étape indispensable pour une utilisation dans le domaine biomédicale. Nous avons ainsi étudié ce système grâce à la modélisation moléculaire afin de comprendre la perte de ces propriétés.
[tel-02464796] Multifunctional materials based on task-specific ionic liquids : from fundamental to next generation of hybrid electrochemical devices and artifical skin
Date: 3 2 月 2020 - 14:58
Desc: Increasing demand of energy requires massive investment for exploration and utilization of renewable energy sources in the energy balance. However, due to the intermittence of the current renewable sources, the generated electricity must be stored under other forms to correlate the fleeting production and the continuous consumption. Despite available commercialized systems, seeking for new materials and new approaches for resolving this problem is still matter of interest for scientific researches. Highlighted advancements have recently oriented the community towards the utilization of nanoscale materials for efficient energy storage and conversion. Although the advantages given by existing nanomaterials for diverse applications, especially in the energy field, their performance is still lower than theoretical purposes. Consequently, tailoring the physical-chemical properties at the molecular scale becomes crucial not only for boosting the activities of the existed materials but also for creating a new type of molecular entities for storing and releasing the energy. Accordingly, this PhD work aim to develop new family of materials based on ionic liquid that exhibits a multifunctionality towards energy applications. Our work is based on the knowhow in surface functionalization and material preparation by simple methods to build up electrochemical systems that can be utilized in various applications. Thus, this thesis will report different results obtained by following this direction and is composed of six chapters: Chapter 1 reports an overview of ionic liquid and polymeric ionic liquid. We propose to review the available literature on the redox-IL from solution to immobilized substrates. Through this chapter, we will achieve the following points: (1) Report the possible uses of ionic liquids in electrochemistry; (2) Discuss about the physical-chemical behaviors of these compounds in solution, (3) Show the immobilization of (Redox-active)–ionic liquids onto different substrates: from thin layer to polymer and (4) Highlight recent advances using polymeric ionic liquids for diverse applications. Chapter 2 will be devoted to different electrochemical assisted approaches for the immobilization of (redox)-ionic liquids to the electrode surface. We will focus on generating a thin layer and polymeric film based ionic liquid. Furthermore, the different characteristics of the new interfaces will be reported. Chapter 3 concentrates on the use of the polymer ionic liquid modified electrodes as emerging catalyst and as template for the generation of hybrid materials towards activation of small molecules. Chapter 4 studies the reactivity at micro/nanometer scale of diverse materials, including single layer graphene, polymeric redox – ionic liquid, using the scanning electrochemical microscopy (SECM). Chapter 5 reports the potential applications of redox ionic liquid and focus on providing the preliminary results towards the fabrication of flexible substrates with interesting functionalities: possibility to convert the friction to electricity and energy storage by using polymeric redox ionic liquids. These studies open a new opportunity to elaborate flexible, wearable and implantable devices. Finally, some concluding remarks are given to summarize different results obtained in the previous chapters. Besides, different perspectives will be given by using ionic liquid as main material for developing different energy storage and conversion systems.
[tel-02443976] Detection of Water Pollutants using Label-free Electrochemical Immunosensors and Electrolyte Gated Organic Field-Effect Transistors
Date: 17 1 月 2020 - 15:10
Desc: Today, with the increase of population, the consumption of drugs and of chemicals in agriculture has dramatically increased. It becomes a worrisome issue because a large amount of these molecules, excreted to the environment, are not well eliminated by water-treatment plants (when they exist) and are therefore released without control into the ecosystem. In too large quantities, these drugs are poisons for living organisms, including humans. Classical analytical methods for the measurement of these chemicals already exist (classical separative methods such as gas chromatography, high-performance liquid chromatography, possibly coupled with mass spectrometry, etc). However, even if extremely precise and reliable, these techniques are difficult to apply for on-site monitoring and are usually costly. For this reason, my thesis focuses on novel analytical approaches to detect small organic molecules such as these pollutants. In a first part of my work, I developped an original immunosensor based on a competitive complexation and on an electrochemical (amperometric) transduction, for detection of diclofenac, which is a non – steroidal anti – inflammatory drug generally employed to protect patients from inflammation and relieve pain. The working electrode was electrografted with two functional diazonium salts, one as molecular probe (a diclofenac derivative coupled with an arylamine) and the other as redox probe (a quinone) also coupled with an arylamine, able to transduce the hapten-antibody association into a change in electroactivity. The transduction was designed to deliver a current increase upon detection of diclofenac (“signal-on” detection). The detection limit is ca. 20 fM in tap water, which is competitive compared to other label-free immunosensors. In the following part of my thesis, I kept the same original transduction approach (competitive immunoassay) but applied to an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. In the last part of my work, I propose an approach which takes profit not only of the capacitive coupling of the EGOFET but also on its sensitivity to electrostatic charges accumulated on the gate surface. To illustrate this in the field of sensors, I used a short peptide (Gly-Gly-His), known to selectively bind copper ions Cu2+. The peptide was immobilized by direct electrooxidation of the primary amine of the first glycine moiety. I demonstrated that GGH-modified EGOFETs can transduce Cu2+ complexation through significant changes of their output and transfer characteristics, in particular their threshold voltage (VTh).
[tel-02402641] Fonctionnalisation de surface des oxydes métalliques par des SAMs dipolaires; application aux cellules photovoltaïques
Date: 10 12 月 2019 - 15:25
Desc: L'insertion de couches minces d'oxyde métallique (MO) à l'interface entre les électrodes conductrices (FTO / ITO, Métaux) et la couche active (polymère, pérovskite) constitue une solution prometteuse pour améliorer les performances des dispositifs photovoltaïques organiques et hybrides. La procédure consiste à introduire des couches MO fonctionnalisées par des monocouches auto-assemblées dipolaires (SAMs) à l'interface entre l'électrode conductrice et la couche active. Les couches SAMs supportant des dipôles perpendiculaires à la surface peuvent avoir un impact important sur les dispositifs électroniques à la fois en affectant la croissance et l'organisation de la couche organique active et en accordant le travail de sortie des couches MO. Dans ce travail, nous montrons que le greffage des molécules dipolaires sur des couches minces de MO peut affecter considérablement les performances des cellules photovoltaïques. Cet impact dépend fortement de l'orientation du dipôle permanent situé sur la molécule SAM.
[tel-02274693] Opto-Electrochemical Methods for Imaging the Reactivity of Individual Nanoparticles
Date: 30 8 月 2019 - 11:33
Desc: A number of coupled optical and electrochemical single particle techniques are employed for investigating a variety of chemical systems at the level of individual objects.On the optical side, holography and visible spectroscopy are imbued with superlocalization principles pushing the applicability of these techniques down to sub-diffraction levels. Nanoelectrochemical techniques such as stochastic impacts and nanoelectrodes are used to complement this information, providing a much more complete characterization of the phenomena.It is shown that this dual optical and electrochemical single particle characterizationis actually crucial to understand complex nano chemical systems in loco. Starting frommodel reactions, such as Ag oxidation, the complexity of the studied phenomena and systems is progressively increased, as light is shed on transport phenomena, aggregation,as well as redox transformations and catalysis on complicated materials such as ill-defined transition metal (cobalt) oxides
Autres contacts
U.F.R. Chimie
Bâtiment Lavoisier
15, rue Jean de Baïf
75013 PARIS