Published on u-paris.fr (https://fr.u-paris.fr)

Inicio > Printer-friendly > Laboratoire Univers et Théories

Image >
-A +A
Version imprimableEnvoyer par email

Laboratoire Univers et Théories

LUTH
Tutelles >
Observatoire de Paris
UFR de rattachement >
UFR Physique
Label unité >
UMR
Partenaires >
Université Paris Diderot, CNRS

Présentation

Le Laboratoire Univers et Théories (LUTH) est une unité mixte de recherche (UMR 8102) du CNRS, de l’Observatoire de Paris et de l’Université de Paris. Le laboratoire regroupe une cinquantaine de personnes dont une petite moitié de chercheurs statutaires (CNRS, Universités, CNAP). L’activité scientifique du laboratoire se concentre essentiellement sur l’étude théorique des systèmes astrophysiques et sur leur modélisation. Une part des activités concerne également le traitement des données des observations à hautes énergies.

Le LUTH est actuellement organisé autour de trois thématiques. Le groupe Cosmologie étudie la formation des grandes structures de l’Univers et en particulier l’influence de la matière noire sur ce processus. L’équipe Phénomènes aux hautes énergies se consacre à la modélisation et à l’observation de objets comme les pulsars ou les noyaux actifs de galaxies. Une partie des activités concerne également la préparation des futurs instruments et la gestion des bases de données liées aux observations. La thématique Relativité et Objets Compacts se propose de travailler sur les différentes situations astrophysiques où la gravité est intense et décrite par la théorie d’Einstein. On pense principalement aux supernovae, aux étoiles à neutrons et aux trous noirs.

Par la diversité des sujets abordés, le LUTH est un laboratoire faisant la part belle à la pluridisciplinarité. Il regroupe des chercheurs aux profils variés venant de l’astronomie, de la physique théorique ou encore de la physique nucléaire. Cette richesse est illustrée par le fait que le laboratoire soit rattaché à trois instituts du CNRS (INSU, INP et IN2P3).

Le laboratoire a une forte composante numérique. Il s’agit non seulement de réaliser des simulations ou des calculs par l’outil informatique mais également de développer des outils performants, le plus souvent mis à la disposition de la communauté scientifique. Cette tâche bénéficie du soutien de l’équipe informatique du laboratoire qui comprend des ingénieurs spécialisés dans ce domaine.

Le LUTH, tout en étant fidèle à son ADN de laboratoire dédié à la modélisation et à la théorie, n’est pas déconnecté des grandes avancées observationnelles de l’astrophysique. Ses membres sont actifs dans de nombreux projets sol ou spatial, aussi bien dans les phases de préparation que d’exploitation des données. Ces activités peuvent prendre la forme de participation officielles aux projets (CTA, Euclid, HESS, LISA) ou d’échanges scientifiques moins formels (Gravity, Planck, PTA, SKA, Virgo...)

L’enseignement et la formation par la recherche font partie intégrante des missions de LUTH. Les chercheurs sont impliqués dans l’enseignement de leur spécialités à presque tous les niveaux des cursus universitaires ou des grandes écoles. Une dizaine de doctorants effectuent leur thèse au sein du laboratoire.

Les chercheurs du LUTH sont conscients de l’importance de la diffusion de la connaissance scientifique en direction du grand public. Cela peut prendre la forme de rencontres avec des scolaires, de participation à des conférences, en passant par des interventions dans les médias pour commenter les nouvelles scientifiques du moment.

Thèmes de recherche

Phénomènes aux Hautes Energies (Equipe PHE)

L’équipe PHE se consacre à l’étude des sources astrophysiques aux hautes énergies et de la physique des milieux moléculaires hors équilibre thermodynamique.

Relativité et Objets Compacts (Equipe ROC)

Les thèmes de recherche de l'équipe ROC concernent la théorie et les tests de la gravitation, les ondes gravitationnelles, la formation et les propriétés des astres compacts (étoiles à neutrons, trous noirs). Le développement d'outils numériques ouverts et originaux y tient une place importante.

Cosmologie : structures et origines (Equipe COS)

L'activité de l'équipe COS couvre plusieurs sujets de recherche en cosmologie parmi lesquels l'étude de l'Energie Noire et ses empreintes sur la formation et évolution des grandes structures cosmiques, travaux qui sont réalisé à l'aide de simulations numériques a haute-performance.

[hal-03711201] Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

Date: 3 Jul 2022 - 05:06

Desc: Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets.

[hal-02475233] Prospects for Fundamental Physics with LISA

Date: 2 Jul 2022 - 19:20

Desc: In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA,we present here a sample of what we view as particularly promising fundamental physics directions. We organize these directions through a “science-first” approach that allows us to classify how LISA data can inform theoretical physics in a variety of areas. For each of these theoretical physics classes, we identify the sources that are currently expected to provide the principal contribution to our knowledge, and the areas that need further development. The classification presented here should not be thought of as cast in stone, but rather as a fluid framework that is amenable to change with the flow of new insights in theoretical physics.

[hal-03711765] Nonradial and nonpolytropic astrophysical outflows. XI. Simulations of the circumstellar environment of RY Tau

Date: 2 Jul 2022 - 04:45

Desc: Context. There are recent observational evidences that RY Tau may present two different outflow stages, a quiescent one and a more active one. We try to model that phenomenon. Aims. We have performed new 2.5D magneto-hydrodynamical simulations of the possible accretion-outflow environment of RY Tau based on analytical solutions to reduce the relaxation time. Methods. We used as initial conditions the analytical self-similar solution we used to model the RY Tau micro jet. In the closed field line region of the magnetosphere we have reversed the direction of the flow and increased the accretion rate by increasing the density and the velocity. We have also implemented the heating rate and adjusted it according to the velocity of the flow. The accretion disk is treated as a boundary condition. Results. The simulations show that the stellar jet and the accreting magnetosphere attain a steady state in only a few stellar rotations, confirming the robustness and stability of self-similar solutions. Additionally, two types of behavior were observed similar to the one observed in RY Tau. Either the steady stellar outflow and magnetospheric inflow are separated by a low static force free region or the interaction between the stellar jet and the magnetospheric accretion creates coronal episodic mass ejections originating from the disk and bouncing back onto the star. Conclusions. The ratio of mass loss rate to mass accretion rate that coincides with the change of behaviour observed in RY Tau, lays within the range of ratios that have been measured during the period of the micro jet initial analysis.

[hal-03210326] H.E.S.S. and MAGIC observations of a sudden cessation of a very-high-energy $\gamma$-ray flare in PKS 1510−089 in May 2016

Date: 1 Jul 2022 - 16:52

Desc: The flat spectrum radio quasar (FSRQ) PKS 1510−089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E > 100 GeV) γ rays. The VHE γ-ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE γ-ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of ∼20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE γ-ray spectrum of PKS 1510–089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the γ-ray flare, even though the detailed flux evolution differs from the VHE γ-ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE γ-ray flare. In the high-energy (HE, E > 100 MeV) γ-ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE γ-ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the γ-ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE γ rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.Key words: radiation mechanisms: non-thermal / quasars: individual: PKS 1510−089 / galaxies: active / relativistic processes⋆ Corresponding authors; e-mail: contact.hess@hess-experiment.eu⋆⋆ Corresponding authors; e-mail: contact.magic@mppmu.mpg.de

[hal-01493751] A deeper view of the CoRoT-9 planetary system. A small non-zero eccentricity for CoRoT-9b likely generated by planet-planet scattering

Date: 1 Jul 2022 - 04:07

Desc: CoRoT-9b is one of the rare long-period (P=95.3 days) transiting giant planets with a measured mass known to date. We present a new analysis of the CoRoT-9 system based on five years of radial-velocity (RV) monitoring with HARPS and three new space-based transits observed with CoRoT and Spitzer. Combining our new data with already-published measurements we redetermine the CoRoT-9 system parameters and find good agreement with the published values. We uncover a higher significance for CoRoT-9b's small but non-zero eccentricity ($e=0.133^{+0.042}_{-0.037}$) and find no evidence for additional planets in the system. We use simulations of planet-planet scattering to show that CoRoT-9b's eccentricity may have been generated by an instability in which a $\sim 50~M_\oplus$ planet was ejected from the system. This scattering would not have produced a spin-orbit misalignment, so we predict that CoRoT-9b's orbit should lie within a few degrees of the initial plane of the protoplanetary disk. As a consequence, any significant stellar obliquity would indicate that the disk was primordially tilted.

Autres contacts

Section de Meudon

Bâtiment du LAM (n°18)

5, place Jules Janssen

92190 MEUDON CEDEX

Lien(s) web >
http://www.luth.obspm.fr

Localisation

5, place Jules Janssen Bâtiment du LAM (n°18)
92190 MEUDON
Francia
Domaines de recherche >
Terre et univers
Compétences >
Astrophysique
Mots clés >
Astrophysique
Cosmologie
Relativité
Planétologie
Exoplanètes
étoiles
plasmas
étoiles à neutrons
astrophysique de laboratoire
Simulation numérique

URL de origen: https://fr.u-paris.fr/es/node/189