
Laboratoire Interdisciplinaire des Energies de Demain
Présentation
Le laboratoire en quelques mots
Le Laboratoire Interdisciplinaire des Energies de Demain (LIED) a pour objectif fondateur de développer « l’écologie des énergies », en menant à la fois recherches scientifiques et techniques guidées par les problèmes à résoudre dans le cadre de la transition énergétique et de l’accroissement des besoins mondiaux en énergie.
Il répond à la nécessité d’une approche interdisciplinaire des problèmes posés, en fédérant les membres – universitaires ou venant d’entreprises – des secteurs Sciences (Biologie, Chimie, Informatique, Mathématiques, Physique, Sciences de l’Ingénieur, Sciences de la Terre) et Sciences Humaines et Sociales (Anthropologie, Economie, Géographie, Histoire, Philosophie, Ecologie, Sciences politiques, Sociologie).
Les membres de l’UMR LIED (17 du secteur sciences et 9 du secteur SHS) se composent de 8 PR, 11 MCU, 3 personnels CNRS (1CR, 1IR, 1assimilée) et de 4 consultants. Le LIED constitue également la pierre angulaire de l’Institut des Energies de Demain (IED), appelé à devenir l’un des quatre instituts transversaux de l’IDEX SCP. Celui-ci comprend l’UMR LIED, la fédération IED et le réseau international PIERI (Paris Interdisciplinary Energy Research Institute).
L’ensemble forme un « dispositif » en cinq modes d’appartenance dont le premier est l'UMR LIED proprement dite. Le deuxième mode d’appartenance à LIED rassemble des membres de la plupart des laboratoires du campus Paris Diderot, irriguant le LIED par ses racines pluridisciplinaires. Deux autres modes l’ouvrent à des laboratoires d'autres PRES et aux entreprises, dont bon nombre le soutiennent très concrètement, en particulier celles qui font partie du conseil scientifique du LIED : AREVA, Bouygues, EDF, Saint-Gobain. Son ouverture internationale est le réseau PIERI.
La figure, généralisable à plusieurs fédérations de recherche, correspond au cas de deux : celle de l'institut des énergies de demain (avec l’UMR LIED représentée par un cercle blanc noté 1) et d’une autre centrée sur le laboratoire X (représenté par un cercle blanc noté X). Les laboratoires du campus Paris Diderot mutualisés avec le LIED sont les cercles colorés notés 2. Ceux satellisés par le X sont des cercles notés ? à colorer selon leurs disciplines. Les laboratoires interagissant avec le LIED et X sont les cercles colorés notés 3 ou 4 selon leurs degrés d’interaction avec ces laboratoires (sphères 3 ou 4 respectivement). Le caractère international du PIERI est symbolisé par un rectangle d’où proviennent des interactions multiformes.
Inscription au LIED
Researchers wishing to discuss collaborative projects are encouraged to get in touch using the following email address: lied-pieri@univ-paris-diderot.fr
Thèmes de recherche
The LIED and its international network PIERI (Paris Interdisciplinary Energy Research Institute) have been launched in the context of increased worldwide demands in energy in the face of environmental concerns, i.e. sustainable resources and impact on the climate.
The LIED favours a global approach and aims at resolving questions at the national and international level by a unique multi-disciplinary approach encompassing basic science (Biology, Chemistry, Physics, Informatics, Mathematics, Earth sciences and Engineering) as well as social sciences (Anthropology, Economics, Geography, History, Philosophy, Political sciences), whether in the academic or industrial domain.
· Objectives : Develop basic and applied science in response to the challenges of the “energy transition” with a focus on the interaction between energy, environment and climate. In the domain of biology, the LIED aims at understanding the basic mechanisms underlying energetic processes in microorganisms and in plants. It fosters applied science for the development of production and transformation of biomass.
· Methods : Biochemistry, Genetics, Genomics, Molecular and cellular biology, Bioinformatics.
. Research orientations : balancing fundamental and applied research.
The work of the PIERI is organised around four axes :
♦ Fundamental science and low-carbon energy sources ;
♦ The science and technology of energy efficiency ;
♦ Forecasting, social and economic analysis, and public policy studies ;
♦ Interdisciplinary epistemology.
The titles of first two axes already illustrate the aspiration to combine fundamental and applied research. Two complementary research groups have been established, entitled : ‘Innovative energy sources and biomaterials’ and ‘Energy transport, instabilities and fluctuations’, composed mainly of researchers from sciences and technologies, but with input from social scientists. The third axis is subdivided into six themes, which all bring together the physical and the social sciences, namely :
The geography of energy sourcing ;
The multilevel governance of energy ;
Social representation and innovation : hydrogen and other energy pathways ;
Energy efficiency and modes of consumption ;
Forecasting models and interdisciplinary convergence ;
Smart grids.
Equipes de recherche
Directeur : Mathieu Arnoux
Procédés des systèmes vivants
- Stress environnementaux et plantes : F. Bouteau ( MCF HDR, Coordinateur)
- Métabolisme secondaire des cyanobactéries : A. Mejean (PR, Coordinateur)
- Génétique et épigénétique des champignons : P. Silar (PR, Coordinateur)
- Biologie et Biotechnologie des champignons : F. Chapeland-Leclerc ( MCF HDR, Coordinateur)
Territoires et sociétés dans la longue durée
- Dynamiques des territoires et des sociétés : C. Mering (PR, Coordinateur), P. Chatzimpiros (MCF, Coordinateur)
- Dynamiques du long terme et transitions énergétiques : M. Arnoux (PR, Coordinateur)
- Sociologie et Sciences politiques : G. Bronner (PR, Coordinateur)
- Economie des inégalités : A.Berthe (MCF, coordinateur)
Efficience énergétique
- Dynamiques couplées et optimisation énergétique : C. Goupil (PR, Coordinateur)
- Dynamiques collectives des systèmes vivants et artificiels : J. Halloy (PR, Coordinateur)
- Climat Energie Métabolisme urbain : L. Royon (PR, Coordinateur)
[hal-03681735] Establishment of a cell suspension culture of the halophyte Cakile maritima
Date: 30 mai 2022 - 16:06
Desc: Cakile maritima is a member of the Brassicaceae family also known as sea rocket. It is an annual succulent halophyte frequent in coastal dune vegetation in Mediterranean regions and Atlantic coasts from North Africa to the north of Europe. This halophyte presents a complex survival strategy at high salinity and its seeds contain up to 40% of an oil which could be suitable for biofuel production and other industrial applications. However, data concerning the cellular mechanisms allowing this plant to resist salinity are still lacking. Cell suspension cultures offer an in vitro system convenient for cell biology studies and biotechnological methods are still not developed for this putative crop. The present paper reports initiation of C. maritima cell suspension cultures from callus obtained from aerial parts of seedlings. The establishment of a suspension culture which preserves its salt resistance provides an opportunity to gain insights into C. maritima biology.
[hal-03681304] Cakile maritima, a promising model for halophyte studies and a putative cash crop for saline agriculture
Date: 30 mai 2022 - 12:20
Desc: Agricultural intensification necessary for global food security as well as changes in temperature and precipitation patterns expected from climate change are likely to cause further deterioration irrigated lands in various part of the world. Salinization is spreading particularly in arid and semi-arid regions and urban sprawl is forcing agricultural production into marginal areas. Many salted marginal areas could support biomass production if halophytes able to tolerate high salinity were used. This chapter presents general data on Cakile maritima, a halophyte, concerning its ecological characteristics, diversity and distribution, adaptation to environment and its potential uses as medicinal plant, for oilseed production or phytoremediation. In a second part we present what have been uncovered in C. maritima in term of mechanisms and physiological adaptations to salinity when compared to other plants. Cakile maritima appears worthy of attention since it meets numerous criteria for being a good genetic model of halophyte. It has a small diploid genome, a short life cycle and produces large amount of seeds. Furthermore Cakile maritima represents a promising species owing its large geographical and ecological amplitude, its economic potential because of its ability to produce numerous secondary compounds and as an oilseed and energy crop. This renders the cultivation of this plant on salted marginal soil of practical significance in the context of the necessary development of biosaline agriculture in the future
[hal-02461138] Cryptogein-induced anion effluxes: electrophysiological properties and analysis of the mechanisms through which they contribute to the elicitor-triggered cell death
Date: 30 jan 2020 - 14:41
Desc: [...]
[hal-01744697] Buoyancy-driven destabilization of an immersed granular bed
Date: 27 Mar 2018 - 16:37
Desc: Under suitable conditions, an immersed granular bed can be destabilized by local thermal forcing and the induced buoyant force. The destabilization is evident from the triggering and establishment of a dense fluid-like granular plume. Varying the initial granular layer average height h, time series of the free layer surface are extracted, allowing us to dynamically compute the underlying volume of the granular layer. The initial interface deformation, the lowering of the average granular interface (i.e. decrease of the granular layer volume) and the emission of a plume are observed and analyzed. We show that the phenomenon is mainly driven by heat transfer, for large h and also involves variable height thermal boundary condition & Darcy's flow triggering, for small h. Simple modeling with no adjustable parameter not only allows us to capture the observed scaling power laws but is also in quantitative agreement with the obtained experimental data.
[hal-01071249] A statistical mechanics framework for the large-scale structure of turbulent von Kármán flows
Date: 6 fév 2015 - 19:19
Desc: In the present paper, recent experimental results on large scale coherent steady states observed in experimental von Kármán flows are revisited from a statistical mechanics perspective. The latter is rooted on two levels of description. We first argue that the coherent steady states may be described as the equilibrium states of well-chosen lattice models, that can be used to define global properties of von Kármán flows, such as their temperatures. The equilibrium description is then enlarged, in order to reinterpret a series of results about the stability of those steady states, their susceptibility to symmetry breaking, in the light of a deep analogy with the statistical theory of Ferromagnetism. We call this analogy ''Ferro-Turbulence
Autres contacts
Université Paris 7 - Paris Diderot
The members of LIED are located on 4 sites :
Bâtiment Condorcet - 10, rue Alice Domon & Léonie Duquet - 75013 Paris
Bâtiment Lamarck A - 39, rue Hélène Brion - 75013 Paris
Bâtiment Lamarck B - 35, rue Hélène Brion - 75013 Paris
Bâtiment Olympe de Gouges - 8 place Paul-Ricoeur - 75013 Paris