Matériaux et Phénomènes Quantiques
Présentation
Le laboratoire Matériaux et Phénomènes Quantiques (MPQ) est une unité mixte de recherche (UMR 7162) du CNRS et de l’Université Paris Diderot, installée sur le campus de Paris Rive Gauche. Elle est composée d’environ 120 personnes au total dont 51 permanent.e.s.
Le laboratoire est spécialisé dans l’étude des matériaux quantiques de frontière et dans le développement de dispositifs quantiques innovants. Ces activités reposent sur un large spectre de compétences théoriques et expérimentales alliant la physique des matériaux, le transport et l’optique, et des plateformes technologiques de salle blanche, de spectroscopie et de microscopie électronique haute résolution.
Les activités de recherche du laboratoire MPQ se déclinent selon les thèmes suivants :
- nouveaux matériaux à l’échelle nano : nanoparticules, nanocristaux, nanotubes fonctionnalisés, matériaux multiferroïques, etc.
- nouveaux états de la matière : fluides quantiques de lumière, couplage ultra-fort en cavité, supraconducteurs non-conventionnels, systèmes fortement corrélés, phases topologiques, etc.
- systèmes nano-optiques innovants : optomécanique, nanophotonique non-linéaire, nanoplasmonique, etc.
- ingénierie quantique et information quantique : composants optoélectroniques quantiques, circuits photoniques quantiques, ions piégés, matériaux et composants hybrides organique/inorganique, ingénierie des surfaces/interfaces.
Les projets actuels du laboratoire incluent le développement de nouvelles sondes pour l’étude des matériaux quantiques, comme la spectroscopie Raman résolue en temps, la microscopie AFM opto-mécanique et la microscopie tunnel sous excitation optique. Réciproquement, les matériaux de frontière sont mis à profit pour la réalisation de nouvelles fonctionnalités dans des senseurs optomécaniques, des circuits photoniques non-linéaires et quantiques, ou encore dans des expériences de transport mésoscopique en cavité optique.
[hal-01793753] Towards the experimental demonstration of quantum radiation pressure noise
Date: 16 5 月 2018 - 22:02
Desc: [...]
[hal-02100722] III-nitride on silicon electrically injected microrings for nanophotonic circuits
Date: 16 4 月 2019 - 11:59
Desc: Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk. We demonstrate direct current room-temperature electroluminescence with 440 mW/cm 2 output power density at 20 mA from such microrings with diameters of 30 to 50 µm. The first steps towards achieving an integrated photonic circuit are demonstrated.
[hal-01965435] Diamond heteroepitaxy on Ir / SrTiO3 / Si (001) substrates: from nucleation to thick films characterizations
Date: 26 12 月 2018 - 08:58
Desc: The up-scaling of heteroepitaxial diamond remains one challenge for the development of power electronics. One option is to consider heterosubstrates compatible with silicon based technologies, such as Ir / YSZ / Si [1]. We have developed diamond heteroepitaxy on iridium buffer layers grown on SrTiO3 / Si (001) [2]. The SrTiO3 has a low lattice mismatch with Ir (1.7 %) whereas the silicon substrate ensures a closer thermal expansion mismatch with diamond. This study provides an extended characterization of the heteroepitaxial process on SrTiO3 / Si (001): from the iridium deposition, to the bias enhanced nucleation (BEN) and the growth of heteroepitaxial diamond films (200 nm up to 240 m thick). High quality iridium buffer layers were grown on SrTiO3 / Si (001) with mosaicities of 0.3° (polar) and 0.1° (azimuthal) according to XRD. After the BEN step, the surface and the interfaces of Ir / SrTiO3 / Si (001) multilayer were investigated by SEM and HRTEM in cross-section. The morphology and the crystalline quality of a 200 nm thick heteroepitaxial diamond film were characterized using SEM and UV Raman. A cross-section of this film was investigated by High Resolution TEM. Thicker diamond films were grown under MPCVD growth conditions close to homoepitaxy [3]. Structural and chemical characterizations of diamond heteroepitaxial films grown on Ir / SrTiO3 / Si (001) were performed by XRD, Raman and Cathodoluminescence. The obtained results demonstrate the potential of Ir / SrTiO3 / Si (001) to achieve heteroepitaxial diamond films with characteristics at the state-of-the-art. The up-scaling has already proved successful allowing the substrate size to be increased from 5x5 to 7x7 mm2. References [1] M. Schreck et al., MRS Bulletin 39 (2014) 504 [2] K. H. Lee et al., Diam. Relat. Mater. 66 (2016) 67. [3] J. Achard et al., J. Phys. D, 40 (2007) 6175
[hal-02500531] Epitaxial diamond on Ir/ SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes
Date: 19 Mar 2020 - 16:44
Desc: Advanced characterizations with combined analytical tools were carried out at the different stages of diamond heteroepitaxy on Ir/STO/Si (001) substrates. HRTEM and STEM-EELS revealed the presence of epitaxial nanometric diamond crystals after bias enhanced nucleation. UV Raman allowed estimating the diamond film quality and its strain at the early stages of heteroepitaxial growth. The crystalline structure and the strain within thick heteroepitaxial films were determined by XRD and CL investigations. A CL study of the cross-section provided the mapping of the dislocation network along the growth direction. Measurements performed on lateral Schottky diodes fabricated on a thick diamond film showed an excellent reproducibility on the substrate with a Schottky barrier height in good agreement with those obtained on homoepitaxial layers.
[hal-01269924] A transmission electron microscopy study of radiation damages to β-dicalcium (Ca2SiO4) and M3-tricalcium (Ca3SiO5) orthosilicates
Date: 5 2 月 2016 - 14:20
Desc: In this paper, we present results of a first study of electron radiation damages to β-dicalcium silicate (Ca2SiO4:C2S) and M3-tricalcium silicate (Ca3SiO5:C3S) in a Transmission Electron Microscope. Electron irradiation is used here as a means to bring to light a difference of reactivity under the electron beam between these two complex ceramic oxides, keeping in mind that C3S reacts faster with water than C2S and that this property remains unexplained, owing to the complex structural characteristics of these ceramics which have not yet been fully elucidated. The following results were obtained by coupling TEM imaging and EDS analysis: i) Rapid decomposition of both silicate particles into CaO nano-crystals separated by (presumably SiO2-rich) amorphous areas at low flux for both silicates; ii) once reached a threshold electron flux, formation of an amorphous crater in both silicates, fully calcium-depleted in C3S but never in C2S; iii) significant post-mortem structural evolution of the craters that at least partially recrystallize in C2S, to be compared to the quasi frozen damaged area in C3S; iv) hole drilling at high flux but only in C3S once reached a threshold flux, ϕth ∼ 7.9 × 1021 e− cm−2 s−1, of the same order of magnitude than previously estimated in a number of ceramic materials, whereas C2S still amorphizes under the electron beam for a flux as high as 2.2 × 1022 e− cm−2 s−1. The radiation damages and their post–mortem evolution differ largely between C2S and C3S. We attempted to relate the obtained results, and especially the evolution of the Ca content in the damaged areas under the electron beam to the available structural characteristics of these two orthosilicates.
Autres contacts
Université Paris Diderot - Paris 7
U.F.R. Physique
Bâtiment Condorcet
10, rue Alice Domon et Léonie Duquet
75205 PARIS CEDEX 13