
Matériaux et Phénomènes Quantiques
Présentation
Le laboratoire Matériaux et Phénomènes Quantiques (MPQ) est une unité mixte de recherche (UMR 7162) du CNRS et de l’Université Paris Diderot, installée sur le campus de Paris Rive Gauche. Elle est composée d’environ 120 personnes au total dont 51 permanent.e.s.
Le laboratoire est spécialisé dans l’étude des matériaux quantiques de frontière et dans le développement de dispositifs quantiques innovants. Ces activités reposent sur un large spectre de compétences théoriques et expérimentales alliant la physique des matériaux, le transport et l’optique, et des plateformes technologiques de salle blanche, de spectroscopie et de microscopie électronique haute résolution.
Les activités de recherche du laboratoire MPQ se déclinent selon les thèmes suivants :
- nouveaux matériaux à l’échelle nano : nanoparticules, nanocristaux, nanotubes fonctionnalisés, matériaux multiferroïques, etc.
- nouveaux états de la matière : fluides quantiques de lumière, couplage ultra-fort en cavité, supraconducteurs non-conventionnels, systèmes fortement corrélés, phases topologiques, etc.
- systèmes nano-optiques innovants : optomécanique, nanophotonique non-linéaire, nanoplasmonique, etc.
- ingénierie quantique et information quantique : composants optoélectroniques quantiques, circuits photoniques quantiques, ions piégés, matériaux et composants hybrides organique/inorganique, ingénierie des surfaces/interfaces.
Les projets actuels du laboratoire incluent le développement de nouvelles sondes pour l’étude des matériaux quantiques, comme la spectroscopie Raman résolue en temps, la microscopie AFM opto-mécanique et la microscopie tunnel sous excitation optique. Réciproquement, les matériaux de frontière sont mis à profit pour la réalisation de nouvelles fonctionnalités dans des senseurs optomécaniques, des circuits photoniques non-linéaires et quantiques, ou encore dans des expériences de transport mésoscopique en cavité optique.
[hal-02412216] Multi-user quantum key distribution with a semi-conductor source of entangled photon pairs
Date: 15 12 月 2019 - 12:50
Desc: [...]
[hal-02412217] Multi-user quantum key distribution with a semi-conductor source of entangled photon pairs
Date: 15 12 月 2019 - 12:50
Desc: [...]
[hal-02412257] Multi-User Quantum Key Distribution With Entangled Photons From A Semiconductor Chip
Date: 15 12 月 2019 - 12:54
Desc: We demonstrate multi-user entanglement-based quantum key distribution using a AlGaAs chip emitting polarization entangled photon pairs at telecom wavelength and a standard dense wavelength division demultiplexer.
[hal-02412215] Multi-user quantum key distribution with a semi-conductor source of entangled photon pairs
Date: 15 12 月 2019 - 12:50
Desc: Quantum cryptography with entangled photon pairs can be more powerful than protocols based on single photons or weak coherent pulses: they can tolerate higher losses and thus allow the distribution of quantum secret keys (QKD) over longer distances [1], they also provide a way towards device-independent quantum cryptography [2]. However, in order to enable a wide use of entangled photon pairs in future quantum telecommunication systems, further developments are needed to demonstrate performant sources that can be easily fabricated and integrated into Telecom fiber networks. Here we present a source consisting of an aluminium gallium arsenide waveguide generating photon pairs in the Telecom band by type II spontaneous parametric down-conversion [3]. Such a device has already been proven to work under electrical pumping [4]. Thanks to the very small birefringence of the guided modes, the pairs are directly generated in a polarization-entangled Bell state, without the need for any post-compensation. Moreover, as the photons are emitted over a large bandwidth (about 100 nm) with a joint spectrum that exhibits frequency anticorrelation, the same source can be used to simultaneously distribute keys among multiple pairs of users by using standard Telecom wavelength demultiplexers [5]. Here, we experimentally show the distribution of quantum secret keys with the BBM92 QKD protocol [6] between four different pairs of users with a commercial 100 GHz demultiplexer (0.8 nm channel width and spacing). Under CW pumping conditions, using free-running InGaAs single-photon detectors, we achieve a secret key rate of 0.21 bits/s and a qubit error rate (QBER) of 6.9% over 50 km of standard optical fiber. Our results, obtained with a robust and simple experimental set-up, open the way towards the implementation of practical device-independent quantum communication protocols.
[hal-01438633] Interface roughness transport in terahertz quantum cascade detectors
Date: 25 8 月 2020 - 08:53
Desc: Infrared detectors based on a quantum cascade have been proposed to suppress the dark current which is a limiting factor in quantum well infrared photodetectors. Those detectors have been mainly designed for the midinfrared wavelength. Operating in the terahertz range involves a complete change of regime of transport since the photon energy is lower than the optical phonon energy. Thanks to a two dimensional model of transport, we have identified interface roughness as the key interaction in such a structure. Interface parameters, evaluated by scanning transmission electron microscopy, are used to study their influence on the resistance of the device.
Autres contacts
Université Paris Diderot - Paris 7
U.F.R. Physique
Bâtiment Condorcet
10, rue Alice Domon et Léonie Duquet
75205 PARIS CEDEX 13