Laboratoire Interuniversitaire des Systèmes Atmosphériques
Présentation
Le LISA, Laboratoire Interuniversitaire des Systèmes Atmosphériques est une unité de recherche de structure originale dépendant des Universités Paris Est Créteil et Paris Diderot, et du CNRS (UMR CNRS 7583).
Le LISA compte environ 130 personnes, dont 50 enseignants-chercheurs et chercheurs (CNRS & IRD), 36 ITA-IATOS et environ 45 post-doctorants, doctorants et étudiants de Master.
Il dispose d'un important potentiel technique et expérimental réparti sur 3.600m2 de locaux à Créteil et d'une antenne opérationnelle sur le site Paris Rive Gauche, incluant aussi des équipements lourds. Les recherches y sont développées autour d’un thème générale : l’Atmosphère (comme le nom du laboratoire l’indique), Ses principaux thèmes de recherche portent ainsi sur la compréhension du fonctionnement des atmosphères terrestres et planétaires, et des impacts liés à la modification de la composition de l'atmosphère par les activités humaines. Les méthodes utilisées sont fondées sur des observations en atmosphère réelle, sur de la simulation expérimentale en laboratoire et de la modélisation numérique.
Pour mener à bien ces recherches, le LISA regroupe des scientifiques de plusieurs disciplines : physiciens, géochimistes, environnementalistes et une majorité de chimistes. Ce dernier aspect est une de ses caractéristiques importantes par rapport aux autres laboratoires du domaine. Un département technique (doté de 4 pôles : chimie, instrumentation, terrain et informatique) et un département administratif sont en soutien des activités de recherche.
Thèmes de recherche
- Pollution atmosphérique Oxydante et Particulaire
- Devenir du Carbone Organique
- Cycle de l’Aérosol Désertique
- Spectroscopie et Atmosphères
- Exobiologie et Astrochimie
[hal-01583184] Diurnal fluxes of HONO above a crop rotation
Date: 26 May 2020 - 04:32
Desc: Nitrous acid (HONO) fluxes were measured above an agricultural field site near Paris during different seasons. Above bare soil, different crops were measured using the aerodynamic gradient (AG) method. Two LOPAPs (LOng Path Absorption Photometer) were used to determine the HONO gradients between two heights. During daytime mainly positive HONO fluxes were observed, which showed strong correlation with the product of the NO2 concentration and the long wavelength UV light intensity, expressed by the photolysis frequency J(NO2). These results are consistent with HONO formation by photosensitized heterogeneous conversion of NO2 on soil surfaces as observed in recent laboratory studies. An additional influence of the soil temperature on the HONO flux can be explained by the temperature-dependent HONO adsorption on the soil surface. A parameterization of the HONO flux at this location with NO2 concentration, J(NO2), soil temperature and humidity fits reasonably well all flux observations at this location.
[hal-01584197] Organic carbon at a remote site of the western Mediterranean Basin: sources and chemistry during the ChArMEx SOP2 field experiment
Date: 9 May 2018 - 12:21
Desc: [...]
[hal-01600639] Mineral dust over west and central Sahel: Seasonal patterns of dry and wet deposition fluxes from a pluriannual sampling (2006-2012)
Date: 26 May 2020 - 23:52
Desc: Total and wetmineral dust deposition has beenmonitored since 2006 at three Sahelian stations in Senegal, Mali, and Niger, respectively at the weekly and the event time scale. Average annual deposited mass fluxes range from 75 to 183 gm(-2) yr(-1), from west to east. Deposition fluxes exhibit a clear seasonal cycle in Mali and Niger. High wet deposition fluxes result from an optimum phasing between dust concentration and precipitation: the maximum occurring at the beginning of the wet season, after the maximum of dust concentration and before the precipitation maximum. The contribution of wet to total deposition varies from 67% in Mali to 8% in Senegal. It is the main factor of variability of the deposition fluxes from year to year and at the seasonal scale in Niger and Mali. Wet deposition fluxes in Mali and Niger are mainly due to the wash out of dust emitted by convective systems. In Senegal, the deposition fluxes are lower and dominated by dry deposition (92% of the annual deposition flux). This is due to the low occurrence of convective systems producing local dust emissions and intense wet deposition. The dry deposition fluxes are primarily driven by the variability of the dust concentration. The dry deposition velocities derived from our measurements are consistent with those estimated by theoretical models. Scavenging ratios computed from the measured wet deposition fluxes, dust concentrations, and precipitation are anticorrelated with precipitation amounts. This suggests that most of the atmospheric dust is scavenged at the very beginning of the precipitation events.
[hal-01238192] Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
Date: 22 Apr 2021 - 15:11
Desc: H<sub>2</sub>O, CO<sub>2</sub>, SO<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>, H<sub>2</sub>S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H<sub>2</sub>O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO<sub>2</sub>. Concurrent evolution of O<sub>2</sub> and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.
[hal-01110987] The significance of the episodic nature of atmospheric deposition to Low Nutrient Low Chlorophyll regions
Date: 28 Oct 2020 - 13:57
Desc: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the sub-surface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (<1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple "fertilization effect of increasing phytoplankton biomass" as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using cli-matological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
Autres contacts
Direction du LISA
Maison des Sciences de l’Environnement 4ème étage
UPEC Campus Centre
61, avenue du Général de Gaulle
94010 CRETEIL CEDEX
contact@lisa.u-pec.fr / 01.45.17.15.60