Laboratoire Interuniversitaire des Systèmes Atmosphériques
Présentation
Le LISA, Laboratoire Interuniversitaire des Systèmes Atmosphériques est une unité de recherche de structure originale dépendant des Universités Paris Est Créteil et Paris Diderot, et du CNRS (UMR CNRS 7583).
Le LISA compte environ 130 personnes, dont 50 enseignants-chercheurs et chercheurs (CNRS & IRD), 36 ITA-IATOS et environ 45 post-doctorants, doctorants et étudiants de Master.
Il dispose d'un important potentiel technique et expérimental réparti sur 3.600m2 de locaux à Créteil et d'une antenne opérationnelle sur le site Paris Rive Gauche, incluant aussi des équipements lourds. Les recherches y sont développées autour d’un thème générale : l’Atmosphère (comme le nom du laboratoire l’indique), Ses principaux thèmes de recherche portent ainsi sur la compréhension du fonctionnement des atmosphères terrestres et planétaires, et des impacts liés à la modification de la composition de l'atmosphère par les activités humaines. Les méthodes utilisées sont fondées sur des observations en atmosphère réelle, sur de la simulation expérimentale en laboratoire et de la modélisation numérique.
Pour mener à bien ces recherches, le LISA regroupe des scientifiques de plusieurs disciplines : physiciens, géochimistes, environnementalistes et une majorité de chimistes. Ce dernier aspect est une de ses caractéristiques importantes par rapport aux autres laboratoires du domaine. Un département technique (doté de 4 pôles : chimie, instrumentation, terrain et informatique) et un département administratif sont en soutien des activités de recherche.
Thèmes de recherche
- Pollution atmosphérique Oxydante et Particulaire
- Devenir du Carbone Organique
- Cycle de l’Aérosol Désertique
- Spectroscopie et Atmosphères
- Exobiologie et Astrochimie
[hal-01834336] Modeling the impacts of atmospheric deposition of nitrogen and desert dust-derived phosphorus on nutrients and biological budgets of the Mediterranean Sea
Date: 10 Jul 2018 - 15:43
Desc: Atmospheric deposition represents a significant source of nutrients at the Mediterranean basin scale. We apply aerosol deposition fields simulated from atmospheric models into the high resolution oceanic biogeochemical model NEMOMED12/PISCES with nutrient ratios used for plankton growth set to Redfield ratio. We perform 3 simulations to determine the impact of nutrients on productivity over the period 1997–2012: (i) without atmospheric deposition, (ii) with nitrogen deposition from anthropogenic and natural sources, and (iii) with deposition of both nitrogen (from anthropogenic and natural sources) and phosphate from desert dust. Time series of modeled deposition fluxes are compared to available measurements. This comparison with measurements shows that both variability and intensity ranges are realistic enough for our main purpose of estimating the atmospheric deposition impact on Mediterranean biogeochemical tracers such as surface nutrient concentrations, chlorophyll a and plankton concentrations. Our results show that atmospheric deposition is one of the major sources of nitrogen and phosphorus for some regions of the oligotrophic Mediterranean Sea. More than 18 · 10<sup>9</sup>gN month<sup>−1</sup> are deposited to the whole Mediterranean Sea. This deposition is responsible for an average increase of 30–50% in primary production over vast regions. Natural dust-derived deposition of phosphorus is sparser in space and time (0.5 · 10<sup>9</sup> g month<sup>−1</sup> on average over the entire basin). However, dust deposition events can significantly affect biological production. We calculate fertilizing effects of phosphate from dust to be low on average (6–10%) but up to 30% increase in primary productivity can be observed during the months when surface water stratification occurs. Finally, these fertilizing effects are shown to be transmitted along the biological chain (primary production, Chl a, phytoplankton, zooplankton, grazing). We also perform a preliminary study on the maximal biological response of the Mediterranean by simulating extreme deposition events throughout the basin over a full year period. We show that nitrogen deposition effects observed in our long-term simulations (1997–2012) are close to maximal effects (i.e. those produced by high intensity deposition events) whereas dust-derived phosphate effects are substantially weaker than the effect on productivity reached when an extreme deposition event occurs.
[hal-03971542] A user-friendly approach to visualize data relating "Science" and "Outreach
Date: 3 Feb 2023 - 11:35
Desc: [...]
[hal-02169636] A user-friendly approach to visualize data relating "Science" and "Outreach
Date: 1 Jul 2019 - 14:20
Desc: [...]
[hal-03657830] Science goals and mission concept for the future exploration of Titan and Enceladus
Date: 22 Feb 2023 - 08:33
Desc: [...]
[hal-00965505] The Atmospheric Observatory of Reunion Island and the Maïdo Facility
Date: 25 Mar 2014 - 12:28
Desc: Communication about The Atmospheric Observatory of Reunion Island and the Maïdo Facility
Autres contacts
Direction du LISA
Maison des Sciences de l’Environnement 4ème étage
UPEC Campus Centre
61, avenue du Général de Gaulle
94010 CRETEIL CEDEX
contact@lisa.u-pec.fr / 01.45.17.15.60