
Matière et Systèmes Complexes
Présentation
Le laboratoire « Matière et Systèmes Complexes » (MSC) est une unité mixte de recherche du CNRS et de l’université (UMR 7057). Le laboratoire est installé depuis 2007 sur le nouveau campus de l’Université Paris Diderot, Paris Rive Gauche, dans le bâtiment Condorcet. Il est réparti sur plusieurs étages. La direction et le secrétariat se trouvent au 6e étage. Le directeur actuel en est Laurent Limat, secondé par la directrice adjointe Florence Gazeau.
Le laboratoire MSC a pour sujet d’étude la matière et les systèmes complexes sous toutes leurs formes. Il peut s’agir de fluides montrant des phénomènes complexes non-linéaires (facettages de jets ou de tourbillons, structures et propriétés complexes de mousses, phénomènes de mouillage, propagation de vagues et de tsunamis) ou bien, par exemple, de systèmes proches de la géophysique et de l’environnement (systèmes granulaires tels que les dunes, phénomènes d’érosion, morphogenèse des plantes et même des villes, nage collective d’algues ou de bactéries…). Les études théoriques et expérimentales conduisent à des applications comme par exemple les éoliennes flexibles de haut rendement, l’optimisation de méthodes d’enduisage, le contôle de propriétés de surface ou la récupération de la biomasse (ingénierie verte)...
Le laboratoire étudie également le couplage entre la physique et la biologie des systèmes vivants, avec une approche multi-échelle. Les recherches effectuées vont d’échelles moléculaires ou supra-moléculaires (assemblages des protéines, chromatine, cytosquelette etc.) jusqu’à l’échelle de l’organisme entier (méduses, poulets, vers etc.) en passant par des études plus fondamentales sur des cellules uniques sur lesquelles sont exercées des forces quantifiées, permettant de comprendre les propriétés biophysiques de la matière vivante. Ces études aboutissent à de possibles applications en ingénierie tissulaire ou régénération des tissus avec des transferts dans le domaine médical.
Equipes de recherche
Le laboratoire est structuré en cinq équipes :
- Dynamique des systèmes hors d’équilibre (DSHE), orientée plutôt vers les comportements non-linéaires de fluides, éventuellement actifs ou avec surface libre, et les phénomènes d’auto-organisation en général (morphogenèse des granulaires, systèmes particulaires inspirés de la matière condensée, colloïdes et transition d’encombrement, etc).
- Dynamique et organisation de la matière molle (DOMM), orientée plutôt vers les matériaux mous visco-élastiques aux propriétés rhéologiques complexes (gels, polymères, mousses etc.), milieux caractérisés par une structure hétérogène, et dont l’organisation et les propriétés dépendent de l’échelle d’observation.
- Physique du vivant, orientée plutôt vers l’étude des processus physiques qui sous-tendent les fonctions biologiques, principalement à l’échelle cellulaire, entre la molécule et le tissu.
- Biofluidique, orientée plutôt vers l’étude des systèmes vivants du tissu à l’organisme, avec des applications à visées médicales.
- Une équipe de théoriciens dont les thématiques couvrent un spectre large de questions fondamentales allant de la physique statistique hors équilibre à la neuroscience, en passant par la matière molle et la matière active.
Cependant les activités de ces équipes se recoupent souvent dans des projets communs aux frontières entre les comportements physiques et/ou biologiques (exemple : comportement de mousses marines, mesures de forces dans des tissus reconstitués, etc.)
[hal-04210771] An FFT approach to the analysis of dynamic properties of gas/liquid interfaces
Date: 19 Sep 2023 - 12:40
Desc: The characterisation of the dynamic properties of viscoelastic monolayers of surfactants at the gas/liquid interface is very important in the analysis and prediction of foam stability. With most of the relevant dynamic processes being rapid (thermal fluctuation, film coalescence etc.) it is important to probe interfacial dynamics at high deformation rates. Today, only few techniques allow this, one of them being the characterisation of the propagation of electro-capillary waves on the liquid surface. Traditionally, this technique has been applied in a continuous mode (i.e. at constant frequency) in order to ensure reliable accuracy. Here we explore the possibility to analyse the propagation of an excited pulse in order to access the interfacial properties in one single Fourier treatment over a wide range of frequencies. The main advantage of this approach is that the measurement times and the required liquid volumes can be reduced significantly. This occurs at the cost of precision in the measurement, due partly to the presence of a pronounced resonance of the liquid surface. The pulsed approach may therefore be used to pre-scan the surface response before a more in-depth scan at constant frequency; or to follow the changes of the interfacial properties during surfactant adsorption..
[hal-01394184] Contextualism as an Important Facet of Individualism-Collectivism: Personhood Beliefs Across 37 National Groups
Date: 8 Nov 2016 - 18:45
Desc: [...]
[hal-03590864] Efficacy and safety of 8 weeks of elbasvir/grazoprevir in HCV GT4-infected treatment-naive participants
Date: 28 Feb 2022 - 11:11
Desc: [...]
[hal-01996795] mTHPC-loaded extracellular vesicles outperform liposomal and free mTHPC formulations by an increased stability, drug delivery efficiency and cytotoxic effect in tridimensional model of tumors
Date: 28 Jan 2019 - 15:45
Desc: Efficient photodynamic therapy with meta-tetra(hydroxyphenyl)chlorine requires the application of specific nanoformulations. mTHPC liposomal formulation (Foslip®) demonstrated favorable pharmacokinetics properties. However, rapid liposomes destruction in circulation and rapid mTHPC release impedes Foslip® applications. Alternatively, mTHPC nanovectorization using extracellular vesicles (EVs) could be an attractive option. EVs are naturally secreted by the organism to play a role in intercellular communication due to the capacity to transport proteins and nucleic acids. EVs also possess a natural ability to deliver therapeutic molecules into cancer cells. The aim of the present study was to evaluate photophysical and photobiological properties of mTHPC loaded in endothelial EVs as nanocarriers. We also studied efficiency of nanovectorisation on mTHPC distribution and PDT activity in multicellular tumor spheroids (MCTSs). MCTS is a nonvascularized in vitro 3D model of cells that mimics a similar microenvironment to in vivo situation. mTHPC-EVs were characterized by means of spectroscopic techniques, flow cytometry and nanoparticle tracking analysis. Compared with Foslip®, mTHPC-EVs are stable in murine plasma. Better mTHPC accumulation and penetration (up to 100 µm) in MCTS was observed for mTHPC-EVs compared with liposomal mTHPC. These factors could explain enhanced photodynamic activity of mTHPC-EVs compared with free and liposomal mTHPC. The light dose inducing 50% of cell death with mTHPC-EVs was 4 and 2.5-times lower than that of free and liposomal mTHPC. The obtained results demonstrate that EVs should be considered as perspective nanocarriers for mTHPC-mediated PDT.
[halshs-01539459] « Tentative de modélisation de la Morphogenèse du réseau des rues »
Date: 14 Jun 2017 - 21:29
Desc: [...]
Autres contacts
Université Paris Diderot - Paris 7
U.F.R. Physique
Bâtiment Condorcet
10, rue Alice Domon et Léonie Duquet
75205 PARIS CEDEX 13