
Matériaux et Phénomènes Quantiques
Présentation
Le laboratoire Matériaux et Phénomènes Quantiques (MPQ) est une unité mixte de recherche (UMR 7162) du CNRS et de l’Université Paris Diderot, installée sur le campus de Paris Rive Gauche. Elle est composée d’environ 120 personnes au total dont 51 permanent.e.s.
Le laboratoire est spécialisé dans l’étude des matériaux quantiques de frontière et dans le développement de dispositifs quantiques innovants. Ces activités reposent sur un large spectre de compétences théoriques et expérimentales alliant la physique des matériaux, le transport et l’optique, et des plateformes technologiques de salle blanche, de spectroscopie et de microscopie électronique haute résolution.
Les activités de recherche du laboratoire MPQ se déclinent selon les thèmes suivants :
- nouveaux matériaux à l’échelle nano : nanoparticules, nanocristaux, nanotubes fonctionnalisés, matériaux multiferroïques, etc.
- nouveaux états de la matière : fluides quantiques de lumière, couplage ultra-fort en cavité, supraconducteurs non-conventionnels, systèmes fortement corrélés, phases topologiques, etc.
- systèmes nano-optiques innovants : optomécanique, nanophotonique non-linéaire, nanoplasmonique, etc.
- ingénierie quantique et information quantique : composants optoélectroniques quantiques, circuits photoniques quantiques, ions piégés, matériaux et composants hybrides organique/inorganique, ingénierie des surfaces/interfaces.
Les projets actuels du laboratoire incluent le développement de nouvelles sondes pour l’étude des matériaux quantiques, comme la spectroscopie Raman résolue en temps, la microscopie AFM opto-mécanique et la microscopie tunnel sous excitation optique. Réciproquement, les matériaux de frontière sont mis à profit pour la réalisation de nouvelles fonctionnalités dans des senseurs optomécaniques, des circuits photoniques non-linéaires et quantiques, ou encore dans des expériences de transport mésoscopique en cavité optique.
[hal-01449662] Direct approach to Gaussian measurement based quantum computation
Date: 19 Mayo 2022 - 14:52
Desc: In this work we introduce an original scheme for measurement based quantum computation in continuous variables. Our approach does not necessarily rely on the use of ancillary cluster states to achieve its aim, but rather on the detection of a resource state in a suitable mode basis followed by digital postprocessing, and involves an optimization of the adjustable experimental parameters. After introducing the general method, we present some examples of application to simple specific computations.
[hal-01272526] VizieR Online Data Catalog: VLBI ICRF2 (Fey+, 2015)
Date: 17 Mayo 2022 - 16:12
Desc: We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. The earliest observations used are from 1979 August and the latest are from 2009 March. ICRF2 consists of accurate positions of 295 new "defining" sources and positions of 3119 additional compact radio sources to densify the frame. ICRF2 has more than 5 times as many sources as ICRF1 (Ma et al. 1997, cat. I/251), is roughly 5-6 times more accurate, and is nearly twice as stable in the orientation of its axes. (3 data files).
[hal-01903110] Room temperature operation of far infrared (λ>17 μm) quantum cascade lasers
Date: 17 Mayo 2022 - 15:10
Desc: [...]
[hal-01619174] Optical phonon scattering of cavity polaritons in an electroluminescent device
Date: 17 Mayo 2022 - 15:10
Desc: [...]
[hal-01831078] LO-phonon scattering of cavity polaritons in an electroluminescent device
Date: 17 Mayo 2022 - 15:10
Desc: [...]
Autres contacts
Université Paris Diderot - Paris 7
U.F.R. Physique
Bâtiment Condorcet
10, rue Alice Domon et Léonie Duquet
75205 PARIS CEDEX 13