
Laboratoire Univers et Théories
Présentation
Le Laboratoire Univers et Théories (LUTH) est une unité mixte de recherche (UMR 8102) du CNRS, de l’Observatoire de Paris et de l’Université de Paris. Le laboratoire regroupe une cinquantaine de personnes dont une petite moitié de chercheurs statutaires (CNRS, Universités, CNAP). L’activité scientifique du laboratoire se concentre essentiellement sur l’étude théorique des systèmes astrophysiques et sur leur modélisation. Une part des activités concerne également le traitement des données des observations à hautes énergies.
Le LUTH est actuellement organisé autour de trois thématiques. Le groupe Cosmologie étudie la formation des grandes structures de l’Univers et en particulier l’influence de la matière noire sur ce processus. L’équipe Phénomènes aux hautes énergies se consacre à la modélisation et à l’observation de objets comme les pulsars ou les noyaux actifs de galaxies. Une partie des activités concerne également la préparation des futurs instruments et la gestion des bases de données liées aux observations. La thématique Relativité et Objets Compacts se propose de travailler sur les différentes situations astrophysiques où la gravité est intense et décrite par la théorie d’Einstein. On pense principalement aux supernovae, aux étoiles à neutrons et aux trous noirs.
Par la diversité des sujets abordés, le LUTH est un laboratoire faisant la part belle à la pluridisciplinarité. Il regroupe des chercheurs aux profils variés venant de l’astronomie, de la physique théorique ou encore de la physique nucléaire. Cette richesse est illustrée par le fait que le laboratoire soit rattaché à trois instituts du CNRS (INSU, INP et IN2P3).
Le laboratoire a une forte composante numérique. Il s’agit non seulement de réaliser des simulations ou des calculs par l’outil informatique mais également de développer des outils performants, le plus souvent mis à la disposition de la communauté scientifique. Cette tâche bénéficie du soutien de l’équipe informatique du laboratoire qui comprend des ingénieurs spécialisés dans ce domaine.
Le LUTH, tout en étant fidèle à son ADN de laboratoire dédié à la modélisation et à la théorie, n’est pas déconnecté des grandes avancées observationnelles de l’astrophysique. Ses membres sont actifs dans de nombreux projets sol ou spatial, aussi bien dans les phases de préparation que d’exploitation des données. Ces activités peuvent prendre la forme de participation officielles aux projets (CTA, Euclid, HESS, LISA) ou d’échanges scientifiques moins formels (Gravity, Planck, PTA, SKA, Virgo...)
L’enseignement et la formation par la recherche font partie intégrante des missions de LUTH. Les chercheurs sont impliqués dans l’enseignement de leur spécialités à presque tous les niveaux des cursus universitaires ou des grandes écoles. Une dizaine de doctorants effectuent leur thèse au sein du laboratoire.
Les chercheurs du LUTH sont conscients de l’importance de la diffusion de la connaissance scientifique en direction du grand public. Cela peut prendre la forme de rencontres avec des scolaires, de participation à des conférences, en passant par des interventions dans les médias pour commenter les nouvelles scientifiques du moment.
Thèmes de recherche
Phénomènes aux Hautes Energies (Equipe PHE)
L’équipe PHE se consacre à l’étude des sources astrophysiques aux hautes énergies et de la physique des milieux moléculaires hors équilibre thermodynamique.
Relativité et Objets Compacts (Equipe ROC)
Les thèmes de recherche de l'équipe ROC concernent la théorie et les tests de la gravitation, les ondes gravitationnelles, la formation et les propriétés des astres compacts (étoiles à neutrons, trous noirs). Le développement d'outils numériques ouverts et originaux y tient une place importante.
Cosmologie : structures et origines (Equipe COS)
L'activité de l'équipe COS couvre plusieurs sujets de recherche en cosmologie parmi lesquels l'étude de l'Energie Noire et ses empreintes sur la formation et évolution des grandes structures cosmiques, travaux qui sont réalisé à l'aide de simulations numériques a haute-performance.
[hal-03971600] Exploring the inner parsecs of active galactic nuclei using near-infrared high resolution polarimetric simulations with MontAGN
Date: 4 fév 2023 - 08:30
Desc: Aims. In this paper we aim to constrain the properties of dust structures in the central first parsecs of active galactic nuclei (AGN). Our goal is to study the required optical depth and composition of different dusty and ionised structures. Methods. We developed a radiative transfer code called Monte Carlo for Active Galactic Nuclei (MontAGN), which is optimised for polarimetric observations in the infrared. With both this code and STOKES, designed to be relevant from the hard X-ray band to near-infrared wavelengths, we investigate the polarisation emerging from a characteristic model of the AGN environment. For this purpose, we compare predictions of our models with previous infrared observations of NGC 1068, and try to reproduce several key polarisation patterns revealed by polarisation mapping. Results. We constrain the required dust structures and their densities. More precisely, we find that the electron density inside the ionisation cone is about 2.0 × 10 9 m −3 . With structures constituted of spherical grains of constant density, we also highlight that the torus should be thicker than 20 in term of K -band optical depth to block direct light from the centre. It should also have a stratification in density: a less dense outer rim with an optical depth at 2.2 μ m typically between 0.8 and 4 for observing the double scattering effect previously proposed. Conclusions. We bring constraints on the dust structures in the inner parsecs of an AGN model supposed to describe NGC 1068. When compared to observations, this leads to an optical depth of at least 20 in the Ks band for the torus of NGC 1068, corresponding to τ V ≈ 170, which is within the range of current estimation based on observations. In the future, we will improve our study by including non-uniform dust structures and aligned elongated grains to constrain other possible interpretations of the observations.
[hal-02338689] bond: Bayesian Oxygen and Nitrogen abundance Determinations in giant H ii regions using strong and semistrong lines
Date: 17 Mar 2023 - 14:28
Desc: [...]
[hal-03997107] Advanced Virgo Plus: Future Perspectives
Date: 20 fév 2023 - 14:04
Desc: While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli.
[hal-03991062] Euclid preparation. XXX. Evaluating the weak lensing cluster mass biases using the Three Hundred Project hydrodynamical simulations
Date: 15 fév 2023 - 16:03
Desc: The photometric catalogue of galaxy clusters extracted from ESA Euclid data is expected to be very competitive for cosmological studies. Using state-of-the-art hydrodynamical simulations, we present systematic analyses simulating the expected weak lensing profiles from clusters in a variety of dynamic states and at wide range of redshifts. In order to derive cluster masses, we use a model consistent with the implementation within the Euclid Consortium of the dedicated processing function and find that, when jointly modelling mass and the concentration parameter of the Navarro-Frenk-White halo profile, the weak lensing masses tend to be, on average, biased low with respect to the true mass. Using a fixed value for the concentration, the mass bias is diminished along with its relative uncertainty. Simulating the weak lensing signal by projecting along the directions of the axes of the moment of inertia tensor ellipsoid, we find that orientation matters: when clusters are oriented along the major axis the lensing signal is boosted, and the recovered weak lensing mass is correspondingly overestimated. Typically, the weak lensing mass bias of individual clusters is modulated by the weak lensing signal-to-noise ratio, and the negative mass bias tends to be larger toward higher redshifts. However, when we use a fixed value of the concentration parameter the redshift evolution trend is reduced. These results provide a solid basis for the weak-lensing mass calibration required by the cosmological application of future cluster surveys from Euclid and Rubin.
[hal-03996737] The Advanced Virgo+ status
Date: 20 fév 2023 - 10:48
Desc: The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4).The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies.The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects).This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking.
Autres contacts
Section de Meudon
Bâtiment du LAM (n°18)
5, place Jules Janssen
92190 MEUDON CEDEX