Laboratoire Jacques-Louis Lions
Présentation
Le laboratoire, créé en 1969, porte le nom de son fondateur Jacques-Louis Lions. il s'agit maintenant d'une unité de recherche conjointe à l’Université Pierre et Marie Curie, à l’université Paris Diderot et au Centre National de la Recherche Scientifique.
Le Laboratoire Jacques-Louis Lions constitue le plus grand laboratoire de France et l'un des principaux au monde pour la formation et la recherche en mathématiques appliquées.
Il accueille l'activités de deux masters deuxième année ce qui représente un centaine d'étudiants. Ses activités recouvrent l’analyse, la modélisation et le calcul scientifique haute performance de phénomènes représentés par des équations aux dérivées partielles.
Fort d’environ 100 enseignants-chercheurs, chercheurs, ingénieurs, personnels administratifs permanents ou émérites, et d’autant de doctorants ou post-doctorants, il collabore avec le monde économique et avec d'autres domaines scientifiques à travers un large spectre d'applications : dynamique des fluides; physique, mécanique et chimie théoriques; contrôle, optimisation et finance; médecine et biologie; traitement du signal et des données.
Thèmes de recherche
- Equations aux dérivées partielles et équations différentielles
- Contrôle, optimisation, calcul des variations
- Calcul scientifique, simulations numériques
- Applications des mathématiques
[hal-01140818] A perturbation-method-based post-processing for the planewave discretization of Kohn–Sham models
Date: 15 Oct 2015 - 14:34
Desc: In this article, we propose a post-processing of the planewave solution of the Kohn–Sham LDA model with pseudopotentials. This post-processing is based upon the fact that the exact solution can be interpreted as a perturbation of the approximate solution, allowing us to compute corrections for both the eigenfunctions and the eigenvalues of the problem in order to increase the accuracy. Indeed, this post-processing only requires the computation of the residual of the solution on a finer grid so that the additional computational cost is negligible compared to the initial cost of the planewave-based method needed to compute the approximate solution. Theoretical estimates certify an increased convergence rate in the asymptotic convergence range. Numerical results confirm the low computational cost of the post-processing and show that this procedure improves the energy accuracy of the solution even in the pre-asymptotic regime which comprises the target accuracy of practitioners.
[hal-00992309] A free interface model for static/flowing dynamics in thin-layer flows of granular materials with yield: simple shear simulations and comparison with experiments
Date: 7 Abr 2017 - 18:54
Desc: Flows of dense granular materials comprise regions where the material is flowing, and regions where it is static. Describing the dynamics of the interface between these two regions is a key issue to understand the erosion and deposition processes in natural environments. A free interface simplified model for non-averaged thin-layer flows of granular materials has been previously proposed by the authors. It is a coordinate-decoupled (separated variables) version of a model derived by asymptotic expansion from an incompressible viscoplastic model with Drucker-Prager yield stress. The free interface model describes the evolution of the velocity profile as well as the position of the transition between static and flowing material. It is formulated using the coordinate $Z$ in the direction normal to the topography and contains a source term that represents the opposite of the net force acting on the flow, including gravity, pressure gradient, and internal friction. In this paper we introduce two numerical methods to deal with the particular formulation of this model with a free interface. They are used to evaluate the respective role of yield and viscosity for the case of a constant source term, which corresponds to simple shear viscoplastic flows. Both the analytical solution of the inviscid model and the numerical solution of the viscous model (with a constant viscosity or the variable viscosity of the $\mu(I)$ rheology) are compared with experimental data. Although the model does not describe variations in the flow direction, it reproduces the essential features of granular flow experiments over an inclined static layer of grains, including the stopping time and the erosion of the initial static bed, which is shown to be closely related to the viscosity for the simple shear case.
[hal-01133786] Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse
Date: 16 Dic 2016 - 15:18
Desc: This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.
[hal-01194364] Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations
Date: 15 Dic 2016 - 13:57
Desc: This paper derives a posteriori error estimates for conforming numerical approximations of the Laplace eigenvalue problem with a homogeneous Dirichlet boundary condition. In particular, upper and lower bounds for an arbitrary simple eigenvalue are given. These bounds are guaranteed, fully computable, and converge with optimal speed to the given exact eigenvalue. They are valid without restrictions on the computational mesh or on the approximate eigenvector; we only need to assume that the approximate eigenvalue is separated from the surrounding smaller and larger exact ones, which can be checked in practice. Guaranteed, fully computable, optimally convergent, and polynomial-degree robust bounds on the energy error in the approximation of the associated eigenvector are derived as well, under the same hypotheses. Remarkably, there appears no unknown (solution-, regularity-, or polynomial-degree-dependent) constant in our theory, and no convexity/regularity assumption on the computational domain/exact eigenvector(s) is needed. Two improvements of the multiplicative constant appearing in our estimates are presented. First, it is reduced by a fixed factor under an explicit, a posteriori calculable condition on the mesh and on the approximate eigenvector--eigenvalue pair. Second, when an elliptic regularity assumption on the corresponding source problem is satisfied with known constants, the multiplicative factor can be brought to the optimal value of one. Inexact algebraic solvers are taken into account; the estimates are valid on each iteration and can serve for the design of adaptive stopping criteria. The application of our framework to conforming finite element approximations of arbitrary polynomial degree is provided, along with a numerical illustration on a set of test problems.
[hal-01218328] Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem
Date: 21 Oct 2015 - 00:49
Desc: This paper deals with the spatial and time discretization of the transient Oseen equations. Finite elements with symmetric stabilization in space are combined with several time-stepping schemes (monolithic and fractional-step). Quasi-optimal (in space) and optimal (in time) error estimates are established for smooth solutions in all flow regimes. We first analyze monolithic time discretizations using the Backward Differentation Formulas of order 1 and 2 (BDF1 and BDF2). We derive a new estimate on the time-average of the pressure error featuring the same robustness with respect to the Reynolds number as the velocity estimate. Then, we analyze fractional-step pressure-projection methods using BDF1. The stabilization of velocities and pressures can be treated either implicitly or explicitly. Numerical results illustrate the main theoretical findings.