
Laboratoire Univers et Théories
Présentation
Le Laboratoire Univers et Théories (LUTH) est une unité mixte de recherche (UMR 8102) du CNRS, de l’Observatoire de Paris et de l’Université de Paris. Le laboratoire regroupe une cinquantaine de personnes dont une petite moitié de chercheurs statutaires (CNRS, Universités, CNAP). L’activité scientifique du laboratoire se concentre essentiellement sur l’étude théorique des systèmes astrophysiques et sur leur modélisation. Une part des activités concerne également le traitement des données des observations à hautes énergies.
Le LUTH est actuellement organisé autour de trois thématiques. Le groupe Cosmologie étudie la formation des grandes structures de l’Univers et en particulier l’influence de la matière noire sur ce processus. L’équipe Phénomènes aux hautes énergies se consacre à la modélisation et à l’observation de objets comme les pulsars ou les noyaux actifs de galaxies. Une partie des activités concerne également la préparation des futurs instruments et la gestion des bases de données liées aux observations. La thématique Relativité et Objets Compacts se propose de travailler sur les différentes situations astrophysiques où la gravité est intense et décrite par la théorie d’Einstein. On pense principalement aux supernovae, aux étoiles à neutrons et aux trous noirs.
Par la diversité des sujets abordés, le LUTH est un laboratoire faisant la part belle à la pluridisciplinarité. Il regroupe des chercheurs aux profils variés venant de l’astronomie, de la physique théorique ou encore de la physique nucléaire. Cette richesse est illustrée par le fait que le laboratoire soit rattaché à trois instituts du CNRS (INSU, INP et IN2P3).
Le laboratoire a une forte composante numérique. Il s’agit non seulement de réaliser des simulations ou des calculs par l’outil informatique mais également de développer des outils performants, le plus souvent mis à la disposition de la communauté scientifique. Cette tâche bénéficie du soutien de l’équipe informatique du laboratoire qui comprend des ingénieurs spécialisés dans ce domaine.
Le LUTH, tout en étant fidèle à son ADN de laboratoire dédié à la modélisation et à la théorie, n’est pas déconnecté des grandes avancées observationnelles de l’astrophysique. Ses membres sont actifs dans de nombreux projets sol ou spatial, aussi bien dans les phases de préparation que d’exploitation des données. Ces activités peuvent prendre la forme de participation officielles aux projets (CTA, Euclid, HESS, LISA) ou d’échanges scientifiques moins formels (Gravity, Planck, PTA, SKA, Virgo...)
L’enseignement et la formation par la recherche font partie intégrante des missions de LUTH. Les chercheurs sont impliqués dans l’enseignement de leur spécialités à presque tous les niveaux des cursus universitaires ou des grandes écoles. Une dizaine de doctorants effectuent leur thèse au sein du laboratoire.
Les chercheurs du LUTH sont conscients de l’importance de la diffusion de la connaissance scientifique en direction du grand public. Cela peut prendre la forme de rencontres avec des scolaires, de participation à des conférences, en passant par des interventions dans les médias pour commenter les nouvelles scientifiques du moment.
Thèmes de recherche
Phénomènes aux Hautes Energies (Equipe PHE)
L’équipe PHE se consacre à l’étude des sources astrophysiques aux hautes énergies et de la physique des milieux moléculaires hors équilibre thermodynamique.
Relativité et Objets Compacts (Equipe ROC)
Les thèmes de recherche de l'équipe ROC concernent la théorie et les tests de la gravitation, les ondes gravitationnelles, la formation et les propriétés des astres compacts (étoiles à neutrons, trous noirs). Le développement d'outils numériques ouverts et originaux y tient une place importante.
Cosmologie : structures et origines (Equipe COS)
L'activité de l'équipe COS couvre plusieurs sujets de recherche en cosmologie parmi lesquels l'étude de l'Energie Noire et ses empreintes sur la formation et évolution des grandes structures cosmiques, travaux qui sont réalisé à l'aide de simulations numériques a haute-performance.
[hal-04218114] Scale-relativistic correction to the muon g − 2 and its hadronic contribution
Date: 26 Sep 2023 - 13:38
Desc: The anomalous magnetic moment (AMM) of the muon $a_\mu=(g-2)/2$ is one of the most precisely measured quantities in physics. Its experimental value shows, in 2023, a $5.2\, \sigma$ discrepancy $\delta a_\mu=(249 \pm 48) \times 10^{-11}$ with its theoretical value calculated in the standard model framework, using a data-driven ($R$ ratio) dispersive method to calculate the Hadron Vacuum Polarization (HVP) contribution. Meanwhile, lattice QCD numerical calculations of this contribution ($L$) have also yielded a significant discrepancy with respect to the data-driven value ($R$), reaching also $\sim 5\, \sigma$ for the ratio of their best determinations (in reduced windows), $a_{\mu L}^{\rm HVP}/a_{\mu R}^{\rm HVP}=1.0257\pm0.0052$. We suggest here a common solution to these two problems. In standard quantum mechanics, mass ratios and inverse Compton length ratios are identical. This is no longer the case in the special scale-relativity (SSR) framework, in which the Planck length-scale is identified with a lower limit scale, invariant under dilations and replacing the zero point. Consequently a generalized form of Compton relation holds in this theory. Regarding the HVP contribution to the muon $g-2$, the lattice QCD calculation is performed in position {\it space-time} while the data-driven result is calculated in {\it momentum} space. The lattice QCD result is therefore theoretically predicted to be too high by a factor $\rho=1.0287$, which is fully compatible with the observed excess. Once corrected, the lattice and $R$ ratio HVP contributions agree within uncertainties. As regards the muon $g-2$ theoretical calculation, it involves a mass-dependent contribution which comes from two-loop vacuum polarization insertions due to electron-positron pairs and depends on the electron to muon mass ratio $x=m_e/m_\mu$. Using the renormalization group approach, we show that, in this relation, $\ln x$ logarithmic terms depend on mass, while linear $x$ terms are expected to actually depend on inverse Compton lengths. By defining the constant $\Cs_0=\ln(m_\Pl/m_0)$ in terms of the Planck mass $m_\Pl$ and of a reference mass $m_0$, the resulting scale-relativistic correction writes $\delta a_\mu= -\alpha^2 \, (x \:\ln^3 x)/(8 \; \Cs_0^2)$, where $\alpha$ is the fine structure constant. The numerical values of this correction for $m_0=m_\mu$, $\delta a_\mu=(230 \pm 15) \times 10^{-11}$, would fully account for the observed experiment-theory difference.
[hal-02403600] Theia: Faint objects in motion or the new astrometry frontier
Date: 10 Dec 2019 - 21:47
Desc: In the context of the ESA M5 (medium mission) call we proposed a new satellite mission, Theia, based on relative astrometry and extreme precision to study the motion of very faint objects in the Universe. Theia is primarily designed to study the local dark matter properties, the existence of Earth-like exoplanets in our nearest star systems and the physics of compact objects. Furthermore, about 15 $\%$ of the mission time was dedicated to an open observatory for the wider community to propose complementary science cases. With its unique metrology system and "point and stare" strategy, Theia's precision would have reached the sub micro-arcsecond level. This is about 1000 times better than ESA/Gaia's accuracy for the brightest objects and represents a factor 10-30 improvement for the faintest stars (depending on the exact observational program). In the version submitted to ESA, we proposed an optical (350-1000nm) on-axis TMA telescope. Due to ESA Technology readiness level, the camera's focal plane would have been made of CCD detectors but we anticipated an upgrade with CMOS detectors. Photometric measurements would have been performed during slew time and stabilisation phases needed for reaching the required astrometric precision.
[hal-01646052] Multi-messenger Observations of a Binary Neutron Star Merger
Date: 14 Apr 2020 - 11:52
Desc: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
[hal-01061614] The Large Observatory For x-ray Timing
Date: 8 Sep 2014 - 10:53
Desc: The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
[hal-02559614] Spectral signature of oscillating slender tori surrounding Kerr black holes
Date: 30 Apr 2020 - 16:45
Desc: [...]
Autres contacts
Section de Meudon
Bâtiment du LAM (n°18)
5, place Jules Janssen
92190 MEUDON CEDEX